
  

Greedy algorithms

➔“A greedy algorithm is an algorithm that follows the 
problem solving heuristic of making the locally optimal 
choice at each stage with the hope of finding a global 
optimum.” - Wikipedia

➔It makes the choice that seems best at the moment and 
then solves the subproblem that remains.



  

Change-making problem

➔Using only R1, R2 and R5 coins, make change for a 
given amount using as few coins as possible. A greedy 
algorithm works:

x ← amount required
while x > 0:

select largest y from {R1, R2, R5} such that y ≥ x
add y to solution
x ← x – y

➔Consider the similar problem: Replace the R2 coin with a R4 
coin. The greedy algorithm makes change for R8 with R5 + R1 
+ R1 + R1, while the best solution is R4 + R4.



  

Comparison to DP
➔Greedy algorithms are usually simpler and more 
efficient, but do not always produce an optimal solution.

➔Both have optimal substructure: An optimal solution to 
the problem contains optimal solutions to subproblems.

➔In dynamic programming, each choice depends on the 
solutions to subproblems, so the solution is calculated 
bottom-up. In a greedy algorithm, the solutions to 
subproblems are not considered and the solution can be 
calculated top-down.



  

Properties to prove

➔Optimal substructure: An optimal solution to the problem 
must contain optimal solutions to subproblems.

➔Greedy choice property: By making the choice that 
seems best at the moment and solving the subproblem 
that remains later, an optimal solution must be produced. 
It may depend on choices made so far, but not on the 
solution to a future subproblem.



  

Interval scheduling
➔Given a set of tasks, each with a start time s(i) and 
finish time f(i), schedule as many tasks as possible, 
without any overlapping intervals.

➔Define two tasks to be compatible if their intervals do 
not overlap.

T ← set of all tasks
while T not empty:

select i from T with earliest finish time
add i to solution
remove all tasks not compatible with i from T



  

Staying ahead
➔If you consider the progress of the algorithm at each 
step, it must always be at least as good as the optimal 
solution.

➔Let i
1
, i

2
, …, i

m
 be the solution produced by the greedy 

algorithm. Assume there is a better solution j
1
, j

2
, …, j

n
. 

Since the second is a better solution, m < n. (Assume 
both sequences are sorted in increasing order of start 
and finish times.)



  

Staying ahead
➔We will prove the greedy algorithm stays ahead by 
inductively proving f(i

k
) ≤ f(j

k
) for each k ≤ m.

➔This is obviously true for k = 1, since the algorithm 
chooses the task with the lowest finish time.

➔For the induction hypothesis, assume that f(i
k-1

) ≤ f(j
k-1

). 

We must prove that it is impossible that f(i
k
) > f(j

k
). Since 

j
k
 is compatible with j

k-1
, and therefore also i

k-1
, the 

algorithm would rather have selected j
k
, which means it is 

impossible.



  

Staying ahead
➔Now that we have proven that f(i

m
) ≤ f(j

m
) (in other 

words, the greedy algorithm stays ahead), we must show 
that this implies the solution is optimal.

➔Since we assumed that m < n, there must be a j
m+1

 

which is compatible with j
m
. It must then also be 

compatible with i
m
.

➔Since j
m+1

 is compatible with i
m
, the algorithm would 

never have removed it from the set T, but the algorithm 
only stops when the set is empty. This contradiction 
proves the greedy solution is optimal.



  

Scheduling with deadlines

➔This is similar to the previous problem, but instead of a 
start and finish time, each of the n tasks have a deadline 
d

i
 and a required duration t

i
. We must assign the start 

and finish times such that f(i) = s(i) + t
i
.

➔All the tasks must be scheduled without overlapping 
intervals, but they are allowed to finish after their 
deadlines.

➔The lateness of a task is defined as f(i) – d
i
. We must 

minimize the maximum lateness.



  

Scheduling with deadlines

sort the tasks so that d
1
 ≤ d

2
 ≤ … ≤ d

n

let t = 0
for i = 1 to n:

s(i) ← t
f(i) ← t + t

i

t ← t + t
i

➔Observe that there is no idle time in the schedule.

➔No tasks are scheduled before other intervals with 
earlier deadlines (there are no inversions).



  

Exchange argument
➔Consider an optimal solution to the problem and 
transform it into the solution produced by the greedy 
algorithm, without affecting its quality. Then the greedy 
solution must be optimal.

➔Note that any two solutions without idle time and 
inversions have the same maximum lateness. Only tasks 
with the same deadline can be scheduled in a different 
order, and the last one determines the maximum 
lateness.

➔We must prove that there is an optimal solution without 
idle time or inversions. Obviously there exists an optimal 
solution without idle time.



  

Exchange argument
➔An optimal solution with inversions must have a task i 
scheduled directly after a task j, such that d

i
 < d

j
.

➔Swapping i and j will result in a schedule with one less 
inversion.

➔The new schedule has a maximum lateness no greater 
than that of the original schedule. Only j's lateness can 
increase. It finishes where i finished before, so its 
lateness is now f(i) - d

j
. Since d

i
 < d

j
, f(i) - d

i
 > f(i) - d

j
.

➔Since the optimal solution can be transformed into the 
greedy solution, without increasing its maximum 
lateness, the greedy solution is optimal.



  

Set systems
➔Mathematical set systems have been proven to allow 
greedy algorithms in some cases. Matroids are one of 
these cases.

➔The example used here will be an algorithm you already 
know – Kruskal's algorithm for finding minimum spanning 
trees.

➔The set system (E, F) consists of a ground set E and a 
family of subsets of E called F.

➔As an example E could be the edges of a graph, and F 
could be defined as all subsets which do not contain 
cycles.



  

Matroids
➔A matroid is an independence system. This means that 
if A ∈ F, for every B ⊆ A, B ∈ F (B can also be the empty 
set).

➔Additionally, it must satisfy the exchange property: If A, 
B ∈ F, and |A| > |B|, there must be an element x ∈ A,
x ∉ B, such that B ∪ {x} ∈ F.

➔Given the weight function w(x), which gives the positive 
weight of element x, a greedy algorithm can be used to 
find a maximum-size A ∈ F such that the total weight of 
the elements of A is maximized or minimized.



  

Matroids

➔The following algorithm can be used to maximize the 
total weight. It is simple to modify this algorithm to 
minimize the total weight.

let A be an empty set
sort E so in monotonically decreasing order of weight
for each x ∈ E, in sorted order:

if A ∪ {x} ∈ F:
A ← A ∪ {x}



  

Kruskal's algorithm
➔Kruskal's algorithm can be represented by a matroid. 
Let E be the edges of the graph, and F all subsets of 
edges which do not contain cycles.

➔F is clearly independent, since removing an edge 
cannot create a cycle.

➔Suppose that, with A, B ∈ F, for each x ∈ A, x ∉ B,
B ∪ {x} ∉ F. To prove the exchange property, we must 

show that |A| ≤ |B|.

➔If V is the set of vertices of the graph, our assumption 
implies that for each edge (u, v) ∈ A, u and v are in the 
same connected component of (V, B). If they were not, 
adding (u, v) to B would not create a cycle.



  

Kruskal's algorithm
➔Since each edge in A connects two vertices in the same 
connected component of (V, B), each connected 
component of (V, A) is a subset of a connected 
component of (V, B).

➔Since (V, A) has |V| - |A| connected components and (V, 
B) has |V| - |B| components, this implies that |V| - |A| ≥ |V| 
- |B|.

➔This means that |A| ≤ |B|, which proves the exchange 
property.

➔Since both properties have been proven, the minimum 
spanning tree problem can be expressed as a matroid, 
which proves that the greedy matroid algorithm produces 
an optimal solution.



  

Generalizations

➔There are generalizations of matroids which can prove 
more greedy algorithms, but their definitions are also 
more complex and they require more work to prove.

➔Two of these generalizations are called greedoids an 
matroid embeddings.
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